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m ~ :  Math. Gen., vol. 9, No. 4. 1976. Printed in Great Britain. @ 1976 

m&nal equations for poly-dimensional zeta functions 
nod the evaluation of Madelung constants 

I J Zucker 
Department of Physics, University of Surrey, Guildford, Surrey, UK 

Received 13 October 1975, in final form 15 December 1975 

Abstract. The lattice sums required to evaluate Madelung constants of ionic crystals are 
very slowly convergent if summed directly. A method is given of transforming these sums to 
other series which not only are rapidly convergent but involve the use of elementary 
functions only. 

1 Introduction 

Inaprevious publication, henceforth referred to as I, Zucker (1975) showed how the 
Madelung constant, a, and other lattice sums for invariant cubic lattice complexes could 
bewritten as a linear combination of at most eight independent sums. For many 
“mon lattices only three of these sums sufficed. These were 

b (2s) = c ’ ( - 1) (m  + n + p2)-‘, 

c(2s) =c’ (- l )m+n(m2+n2+p2)-s ,  

42s) =E’ (- l)m+n+p(m2+n2+p2)--s. (1.3) 

huther useful sum, a(2s), given by 

a(2s)=c’(m2+n2+p2)-S (1.4) 

(23-2s-l)a(2s) =36(2s)+3~(2s)+d(2s). (1.5) 

zh considered, but in I it was shown that 

‘‘bh the sums to be over all integer values of indices appearing, excluding only the 
they are simultaneously zero. To evaluate a the appropriate value of s is 4 

‘hipla results for some ionic crystals given in I were 

a(NaC1) = 2d(l); a(ZnS) = 3[b(l)+d(1)1/2; 

.(CsCl)=~3b(l)+d(l)]/2 =3[a(l)-c(1)1/2. (1.6) 
k w u ~ o f a  are all in terms of the basic cube side formed by one species of ion. The 
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"e%% sums b(l)-d(l) are very slowly convergent. Indeed a(1) as defined by (1.4) ,ji 
but it has a value as determined by (1.51. 
h a recent paper, Hautot (1974) developed a method used by van der Hog ad 

B e m n  (1953) which enabled such sums to be calculated very rapidly. n e  mew 
used H d e l  integral transforms and Schlomilch Series. In a further paper hUtM 
(1975) developed his approach and transformed the sums into quicklyconvergentseries 
involving elementary functions only. Here we shall re-derive Hautot's (1975) resdtF 
without using Hankel transforms or Schlomilch series. The results will be derived from 
functional relations deduced for 42s)  - d(2s), which incidentally enable us to evaluate 
these as functions of s for negative arguments. In addition to the functional eqmtioB 
the standard result 

m 

(- l)"'(m2+ b2)-' = (T cosech d ) / b  
-en 

(1.7) 

will be used. This formula is found in many books on complex variable, e.g. Phillips 
(1951). 

2. Functional equations for a(2s)-d(2s) 

In I, 42s) - 4 2 s  j were represented as Mellin transforms of Jacobian 8 functions. 
Briefly recapitulating, let M, be the Mellin operator defined by 

They yield the identities 

e3 = e3(q4) + e2(q4); 6, = e3(q4) - e2(q4). 

Then 

~(2s)=M,(e:- 1) 
b(24 =~,(e$e,--i) 

42s) = M,(e,e,2- 1) 
d(2s)=MS(8:- 1) with q =e-'. (2.7) 

An important property of M, is that 
(2.8) 

These formulae were all discussed in I. Here some further well known results are 
required, namely the relations 

(2.9) 

which are forms of the Poisson summation formula. me application of (2.8) 
(2.4-0-07) together with the use of (2.3) when necessary will yield relations kW 

Ms(f(qk)) = k-'M,(f(q)), q = e-'. 

r 1/263(e-m) = d3(e-"/'); t*/2e2(e-") = e,(e-r/'), 
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4 2 s )  and a(3-2s)-d(3-2~). The method is illustrated by applying it to the a ( N  
d e r  1- and 2-dimensional sums first. 

&&der the l-dimenSiOnal sum 

A(1:2s) =c' (m2)-" =M,(03- I). 

(2.8) one has 

MS(O3- 1) = dMs[03(e-w'- l)] = ~'M,[t-'/~0,(e-~/')- 11 
= K($, s)M+(03 - 1) 

(2.10) 

(2.11) 

T'~-"'I'(D/~ - S) 

I'b) K(D/2, s) = 

& D is the dimensionality of the sum. Thus (2.1 1) gives 

A( 1:2s) = K(;,s)A (1 : 1 - 2s). (2.12) 

But A(1:2s) is just the Riemann zeta function, 5(2s), and (2.12) is nothing but the 
well-known functional relation for 5(2s). Indeed the above derivation is one of the 
standard methods of obtaining the relation and is demonstrated, for example, in 
3tchmarsh (1951). f(2s) has a simple pole at 2s = 1. (2.12) allows us to analytically 
continue f(2s) to values of 2s < 1. 

Consider now the 2-dimensional sum 

A(2:2s) =C c' (m'+r~')-~ =M,(Oi- 1) (2.13) 

whichcould be considered as a 2-dimensional zeta function. Using the same method as 
before we have 

A(2:2s) = K(l:s)A(2:2 -2s). (2.14) 

Itso happens that A(2:2s) can be decomposed into a product of simple sums (Hardy 
1919) thus 

W 

A(2:2s) =45(s)p(s), where p(s) = C (- 1)"(2n + l)-'. (2.15) 
0 

(2*14) after some rearrangement then yields the elegant relation 

A(22s) has a simple pole at s = 1 and again the functional equation enables US to 
m n b ~ e  the function for s < 1. 
'Ow a b )  =A(3:2s) is the 3-dimensional analogue of the zeta function. As far as is 

lmawn it " m t  be decomposed into a product of simple sums as can A(2:2s). 
bMekss its functional relation is easily derived giving 

a(2s)=K(3/2, s)a(3 -2s). (2.17) 

4('28)hasasbPk pole at s = 3/2 and (2.17) allows us to analytically continue a(2s) into 
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the region s < 3/2. Functional relations for b(2s) - d(2s) maybe derived saarlybnt 
using somewhat more algebra. They are 

b(2s) =2-2sK(3/2, s ) [u(~  -2s)+b(3 -2s) - ~ ( 3  -2s)-d(3-2~)] (2.18) 

42s)  = 2-2’K(3/2, s)[u(~ -2s) -b(3 -2s) - ~ ( 3  -2s) + d(3-2~)]  (2.19) 

If s is put equal to 3 then K(z, i) = T-’. With the aid of (1.5) the following relationsare 
found 

d ( 2 ~ )  = 2 ”K(3/2, s)[u(~ -2s) -3b(3 - 2 ~ ) + 3 ~ ( 3  -2s)- d(3 -2s)l. (2.20) 

3a(l) = 3b(l)+3c(l)+d(l); 

TU ( 1) = U (2) ; 

U (2) = 3 b (2) + 3 c (2) + dj2); 

C (2) ; ~b ( 1) = 2 b (2) T C  ( 1 ) = b (2) + ~ ( 2 )  + d(2); 

?rd(l) = 3c(2). (2.21) 
Of all eight unknowns u(1)-d(1) and u(2)-d(2), only three are independent. Hence 
allmay be foundknowingsay b(2)- d(2). In their form (l.lH1.3) theyarehardlymore 
rapidly convergent than b( 1) - d(  l), but using (1.7) they can be converted into speedily 
convergent sums of elementary functions. This is now illustrated with c(2) .  This maybe 
decomposed using the result f (n2)  =f(O) + 22;”f(n2) thus 

42 )  =c ‘ (-  ~ ) ~ + “ ( m ’ +  n2+p2)-l = s1 +s,+ s,+ s,. (2.22) 

c o m m  > 

s4 = 4  c (- l)m+n(m2+ n’+p2)-l. 
-cc 1 1 

SI  is just r 2 / 6 .  S2 and S3 can be derived from the results of Glasser (1973) and ZUCker 
(1974) yie!ding S2 = -$P In 2 and S3 = - P In 2. Using{l.7), S4 becomes 

(-1)” cosech(n2+p’)”’T 
(n + p’) ll2 

s4=47Tc C 
1 1  

(2.23) 

Hence d( l )  becomes 

This is precisely the result given by Hautot (1975). (Hautot (1975) has dNaCi)’ 
-d(l). The reason for this is that he defines a(NaC1) in terms of the nearest&?@ 
distance rather than in terms of the side of the basic cube formed by one PdcularloE 
The negative sign is simply due to his definition of a as a positive quantity.) In a similar 
way it may be shown that 

cosech( n2 + p2)’” P 
+ p 2 ) l l z  , 

w m  l r 9  41)  =---In 2 +4 c [1+ (- 1)” +( - l)n+p] 
2 2  1 1  

(225) 

(226) 
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ot(1g75) points out, the cosech sums are rapidly convergent. For example d(  1) Asw ken to ten decimal places with just nine terms. b(1)-d(1) may thus be rapidly 
and hence Madelung constants for simple crystals may be found. In I five 

dberm were also considered and found necessary to evaluate a for more complex 
lattices. These sums were 

e(2s)=C ( - l )m[m2+(n-$)2+(p-$)2~-s 
1 2 --s f(2s)=C (-l)m+n[m2+n2+(p-T) 3 

g(2~) = 8 
h (2~)  = 4  C (- 1)"+'[ m2 +(2n -$)2+(2p -$)'I-' 

(- l)m+n+p[(2m -$)'+ (2n -4)'+(2p -$)'I-" 

j(2s) = 4  c (- l)m+n+P[m2 +(2n -$)2+(2p -;)"I-". 

e(1) = ?r-'f(2); f(1) = ~- 'e(2) ;  g(1) = J2.rr-'g(2); 

h(1) = 7F1(h(2)+j(2)); 

my be shown for these sums that 

j(1) = 7F1(h(2)-j(2)). 

t(2)-j(2) may all be re-expressed in terms of quickly convergent cosech sums using 
(1.7) and one obtains 

(-1)" co~ech[n~+(p -~)~]~ /~ . r r  
e(1) = 2 In( 1 +42) +4 c C 1 2 1/2 

1 1  b 2 + ( p - - d  1 
cosech[(n-$)2+(p-z) 1 2 ] 1/2 ?r 

[(n-$)z+@-z) 1 2 ] 1/2 
f(l)=4;; 

O0 (-l)"~osech[$(2n-$)~+(p-~) 1 2 ] 1/2 T 

r$(2n-32+(P-Z) 1 2 1 1/2 
g(1) =442 c 

-w -w 

O0 cosech[2n2+(p-y) 1 2 ] 1/2 r 
h(1) = 4 ln(1 +J2) + 8 c 1 2 1/2 

1 1 [2nZ+(p-d 1 

@of which may be rapidly calculated. 

3. W o n  

(1975) deduced a relation between a(NaCl), cr(eSCl) and a(ZnS). This 
*nkimplicit in (1.6) and has been stated or implied before e.g. Naor (1958 and ""yhhd date), Bertaut (1954), Fumi and Tosi (1957) and Sakamoto (1958). 
bans between Madelung constants of many simple crystals exist, since they are 
%hlineammbinations of b(1), c(1) and d(1). 
lae method Of obtaining functional equations can be applied to higher dimensional 

z.:td&ulty. For example the simplest D dimensional analogue to the zeta 
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and this obeys the relation 

(3.2) A(D:2s)= K(D/2, s)A(D-2~:2$). 

A(D:2s) has a simple pole at 2s = D and the above result allows US to analyticany 
continue A(D:2s) into the region 2s < D. There are, of course, more compliatdsllms 
malogous to b(2s) -d(2s), the number increasing as D becomes larger. 
results to (1.3 and (2.18)-(2.20) may be obtained. 
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Appendix 

Hautot (1975) gives the values of some series of the form 

cosechnnA AT 
= -f In 2 + - 4  12 ln[k-’(1- k2)J, (AI) 

n = l  n 

where h = K’JK and K(k)  is the complete elliptic integral of the first kind with mod& 
k. K‘= K(k? where (k’)2 = 1 - k2. He states a theorem of Abel’s saying that k maybe 
found in finite form if K’/K is of the form (a + bdm)/(c + d d n )  where Q, b, c, d, m andn 
are all integers. The word ‘finite’ needs amplification. Abel’s theorem states that under 
the above conditions k is the root of an algebraic equation with integral coeffiaents. 
Thus k cannot be necessarily expressed in radicals. 

Another way of expressing the series in (AA) is by using (1.7)’ whence it may be 
shown that 

and 

The double series on the right-hand sides of (A.2) and (A.3) have been evaluated in a 
number of cases by Zucker and Robertson (1975) and yield Hautot’s resub for A 
and 2. Other examples are 

,cosech5m   IT In2 1 +d5 =----2 I*(+. 
n 12 2 i (-1) 

n=l  



Functional equations for Madelung constants 

"Its such 
(- l)"cosech(3n - I)?r 

3n-1 =bin q2-43) c 
4 
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(A.7) 

may also be obtained. 
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