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functional equations for poly-dimensional zeta functions
qd the evaluation of Madelung constants

1J Zucker
Department of Physics, University of Surrey, Guildford, Surrey, UK

Received 13 October 19735, in final form 15 December 1975

Abstract. The lattice sums required to evaluate Madelung constants of jonic crystals are
very slowly convergent if summed directly. A method is given of transforming these sums to
other series which not only are rapidly convergent but involve the use of elementary
functions only.

1. Introduction

Inaprevious publication, henceforth referred to as I, Zucker (1975) showed how the
Madelung constant, «, and other lattice sums for invariant cubic lattice complexes could
b written as a linear combination of at most eight independent sums. For many
wmmon lattices only three of these sums sufficed. These were

b2s) =Y (- 1) (m>+n’+p)~, (1.1)
c2s)=Y (-1 (m>+n>+p)~, (1.2)
d2s)=Y" (=)™ P (m>+n2+p?) . (1.3)

Alurther useful sum, a(2s), given by
a(2s)=zf(m2+n2+p2)_s (14)

%o considered, but in I it was shown that
(27 ~1)a(2s) =3b(2s) +3c(2s) + d(2s). 13

Vi . -
N"“:ECS the sums to be over all integer values of indices appearing, excluding only the
- Mere they are simultaneously zero. To evaluate  the appropriate value of s is 3
ical results for some ionic crystals given in I were

aNaQ)=2d(1);  a(ZnS)=3[b(1)+d(1)]/2;
a(CsCh) =[3p(1)+d(1)]/2 =3[a(D)=c(1))/2. (1.6)

¥ues of & are all in terms of the basic cube side formed by one species of ion. The

499



500 1J Zucker

sums b(1)—d(1) are very slowly convergent. Indeed a(1) as defined by (1.4) diverges,
but it has a value as determined by (1.5).

In a recent paper, Hautot (1974) developed a method used by van der Hog and
Benson (1953) which enabled such sums to be calculated very rapidly. The method
used Hankel integral transforms and Schidmilch series. In a further paper Hayty
(1975) developed his approach and transformed the sums into quickly convergent series
involving elementary functions only. Here we shall re-derive Hautot’s (1975) regys
without using Hankel transforms or Schldmilch series. The results will be derived frop
functional relations deduced for a(2s)— d(2s), which incidentally enable us to evaluate
these as functions of s for negative arguments. In addition to the functional equations

the standard resuit

Y (= 1)™(m*+ b)) = (s cosech wb)/b an
will be used. This formula is found in many books on complex variable, ¢.g. Phillips
(1951).
2. Functional equations for a(2s)—d(2s)

In I, a(2s)—d(2s) were represented as Mellin transforms of Jacobian 6 functions.
Briefly recapitulating, let M be the Mellin operator defined by

T(s) My(f(1)) = ] () dt 2

where I'(s) is the gamma function. Further let

-0

0,=6,(q)=), q" ¥ 8:=059)=Y q™; 8,=8,(q)= Y (~1)"q". 22
-0 —Q0

They yield the identities
8: = 05(q") + 0,(q"); 0,=05(g*)— 0,(q*). 23
Then
a(2s)=M,(63-1) 24
b(2s) =M,(626,~1) (2.3
c(2s) =M,(850%~1) (26)
d(2s)=M,(63-1) withg=e™ @n
An important property of M, is that
. (28

MJ(f(g") =k *M,(f(g)),  q=e"

These formulae were all discussed in I. Here some further well known results &%
required, namely the relations '

t1/203(e—1ﬂ) = os(e—-ﬂ/f); t1/282(e—1rt) = 04(e—‘n'/f), (2 )

which are forms of the Poisson summation formula. The application of (2.8.) and (29)°
(2.4)+2.7) together with the use of (2.3) when necessary will yield relations be
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d(2s) and a(3—2s)—d(3—2s). The method is illustrated by applying it to the

alts” 1- and 2-dimensional sums first.

SEm}z;‘;;sider the 1-dimensional sum

A(L:25) =Y (m) ™ =M,(6;~1). (2.10)
From (2.8) one has

M,(8s—1) = 7" M,[65(e™™ = 1)] = m°M,["/?8,(e™™") — 1]

=K@, s)M;_(6;—1) (2.11)

where

K(D/2,5)= "2S_D/2FI;(S')) f2-5)
and D is the dimensionality of the sum. Thus (2.11) gives

A(1:25)=K(,s)A(1:1-2s). (2.12)

But A(1:2s) is just the Riemann zeta function, {(2s), and (2.12) is nothing but the
well-known functional relation for £(2s). Indeed the above derivation is one of the
standard methods of obtaining the relation and is demonstrated, for example, in
Titchmarsh (1951). £(2s) has a simple pole at 2s=1. {2.12) allows us to analytically
continue £(25) to values of 2s <1.

Consider now the 2—dimensional sum

A2:25) =Y. ¥ (m*+n?) =M,(6*-1) (2.'13)

which could be considered as a 2-dimensional zeta function. Using the same method as
before we have

A2:25)=K(1:5)A(2:2—253). (2.19)

Iltgslog?gpens that A(2:25) can be decomposed into a product of simple sums (Hardy
us

A(2:25)=4¢(s)B(s), where B(s) =2, (- 1)"Qn+1)"". (2.15)
Q
(2.14) after some rearrangement then yields the elegant relation
T(s){(s)B(s) _T(1-5)¢(1-s5)B(1~s)
- = T . (2.16)
A(Zfzs) has a simple pole at s =1 and again the functional equation enables us to

tontinue the function for s<1. -

N°W,a(23) = A(3:2s) is the 3-dimensional analogue of the zeta function. Asfar asis
ltl ‘annot be decomposed into a product of simple sums as can A(2:2s).
Cless its functional relation is easily derived giving

a(25)=K(3/2, s)a(3~-2s). (2.17)

a(2s : .
Jhasa Simple pole at s = 3/2 and (2.17) allows us to analytically continue a(2s) into
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the region s <3/2. Functional relations for b(25)—d(25s) may be derived similarly by
using somewhat more algebra. They are

b(25)=2"*K(3/2, s)[a(3—25)+b(3~25)—c(3—-25)—d(3~2s)] (2.18)
¢(25)=2""K(3/2, s)[a(3-25)—b(3~25)— c(3—25)+d(3~2s)] (2.19)
d(2s)=2 *K(3/2,s)[a(3—-2s)-3b(3 —25)+3c(3 —2s5)—d(3—-2s)]. 2.20)

If s is put equal to 3 then K3, 2) == ". With the aid of (1.5) the following relations are
found
3a(1)=3b(1)+3c(1)+d(1); a(2)=3b(2)+3¢(2)+d(2):
ma(1)=a(2); wb(1)=2b(2)+c(2); wc(1)= b(2)+¢(2)+4d();
wd(1)=3c(2). 2.2y

Of all eight unknowns a(1)—d(1) and a(2) —d(2), only three are independent. Hence
all may be found knowing say 5(2)— d(2). In their form (1.1)~(1.3) they are hardlymore
rapidly convergent than b(1)—d(1), but using (1.7) they can be converted into speedily
convergent sums of elementary functions. This is now 111ustrated with ¢(2). This maybe

decomposed using the result 2%, f(n°) = f(0) + 22T f(n?) thus

@)=Y " (=1 (m*+n*+p) =8, +S,+5;+8S.. @2
$i=—L% (-1)"m? S, =L (=)™ (m*+pH)7;

S=X ' (~1)""(m?+n? 7Y

=4 L XL ()" (m+n’+p7)7
11

éMe

S, isjust 72/6. S, and S3 can be derived from the results of Glasser (1973) and Zucker
(1974) yielding S, = —3mIn2and §3=—7In2. Using (1.7), S, becomes

e (=1)" cosech(n®+p?) "7 2.2
=41 ZZ (n +p )1/2 .

Hence d(1) becomes

3¢2)_7 9 2 & (=1)" cosech(n’+p
d(1)== L 2+1ZZZ i)
This is precisely the result given by Hautot (1975). (Hautot (1975) has aNaCl)=
—d(1). The reason for this is that he defines a(NaCl) in terms of the nearest netghb"‘”
distance rather than in terms of the side of the basic cube formed by one pamcula;;’];
The negative sign is simply due to his definition of « as a positive quantity.) Inas
way it may be shown that

RAYY

© © 2,
C(l) =g—§ln 2+4 Z Z []_ +(__l)n +(_ 1)n+p]COSC(Ch(1 “Z)[i/z (225)

osech(n +pH e (2.26)
(n*+p%)™*

b(1)= g—%ln2+4z L+ (-1
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Hautot (1975) points out, the cosech sums are rapidly convergent. For example d (1)
A 1 to ten decimal places with just nine terms. b(1)—d(1) may thus be rapidly
alclated and hence Madelung constants for simple crystals may be found. In I five
other sums were also considered and found necessary to evaluate a for more complex

abic lattices. These sums were
e2s)=L (=) [m*+(n =2+ (-1
fes)=% (=)™ " [m*+n’+(p—T
g(25)=8 L (=)™"P[2m -3’ +(2n—-3)*+(2p—’T"
h(25)=4 ) (-1 [m*+2n—5*+Q2p -1~
j@2s)=4 L (=)™ m*+2n~*+2p—~D°T".

Jtmay be shown for these sums that
e)=77f2);  f)=mTle);  gl)=v2m'g(2);.
h()=7""(h(2)+j(2); HW=7"(h(2)=j(2)).

¢())-j(2) may all be re-expressed in terms of quickly convergent cosech sums using
{L.7) and one obtains

_ < & (—1)" cosech[n®+ (p—3*1""*w
e(1)=2In(1+v2)+4 ; ; o

S e cosech[(n—3)°+(p—9T"m
=42 2 S -

a/n = R (=1)" cosech3(2n =3’ +(p =91’
=L L o (-7

_ < & cosech[2n?+(p -T2
h(l)—4ln(1+s/2)+8 ; ; [2n2+(p_%)2]1/2

. 22 cosech[(n =3 +2(p —3°1"*x
im=8
L L 2G5
alof which may be rapidly calculated.

3 Discussion
Hau@ F1?75) deduced a relation between a(NaCl), a(CsCl) and «(ZnS). This
Ui mplicit in (1.6) and has been stated or implied before e.g. Naor (1958 and
lshed date), Bertaut (1954), Fumi and Tosi (1957) and Sakamoto (1958).
ons between Madelung constants of many simple crystals exist, since they are
linear combinations of b (1), c(1) and d(1),
_meth‘)d. of obtaining functional equations can be applied to higher dimensional
M:‘nt?:’m difficulty. For example the simplest D dimensional analogue to the zeta

AD:25)=F (m? .. +m2) ™ =M,[6P—1] (3.1)
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and this obeys the relation
A(D:2s)=K(D/2, s)A(D —2s:2s). (62)

A(D:2s) has a simple pole at 2s =D and the above result allows us 1o analyticaly
continue A(D:2s) into the region 2s < D. There are, of course, more complicated sumg
analogous to b(2s) —d(2s), the number increasing as D becomes larger. Analogogs
results to (1.5) and (2.18)—(2.20) may be obtained.
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Appendix

Hautot (1975) gives the values of some series of the form
Y -°9—53°nh—”l‘= ~Hn 2+ 324k (1K) A1)
n=1

where A = K'/K and K(k) is the complete elliptic integral of the first kind with modalus
k. K'=K(k') where (k")* =1—k?. He states a theorem of Abel’s saying that k maybe
found in finite form if K’/ K is of the form (a + bv'm)/(c + dv/n) where a, b, ¢, d, mandn
are all integers. The word ‘finite’ needs amplification. Abel’s theorem states that under
the above conditions k is the root of an algebraic equation with integral coefficients.
Thus k cannot be necessarily expressed in radicals.

Another way of expressing the series in (A.1) is by using (1.7), whence it may be
shown that

Z cosech AW=H+—A_ Z Z (_l)m(mz_*_/\znz)-q (A.Z)
n=1 n 12 27 (mneo0)
and
Z (_l)nc.;se_c_h_{"_ﬂ:.n.:.A_w_*.iv Z Z (_1)m+n(m2+’\2n2)—1. (A3)
=t n 12 2% (mne00)

The double series on the right-hand sides of (A.2) and (A.3) have been evaluated if ?
number of cases by Zucker and Robertson (1975) and yield Hautot’s results forA=
and 2. Other examples are

© . h

T (-1) cosec 3M=E—E——%ln(2+~/3) (A4
n=1 n 4 2

y s A 2l 4v2) i
n=1 n 3

s ,_gweosechSmn_ 57 In2 1+~/5) (A
Ly 5)
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Other results such as

y &1 °°3‘°‘:°f(13 R DT 82 —v3)
ay also be obtained.
References

Bertat F 1954 C. R. Acad. Sci., Paris 239 234-5

fumi F G and Tosi M P 1957 Phil. Mag. 2 284

Gasser ML 1973 J. Math. Phys. 14 409-13

Hardy G H 1919 Mess. Math. 49 85-91

Hostot A 1974 J. Math. Phys. 15 1722-7

—1975 ]. Phys. A: Math. Gen. 8 853-62

va der Hoff BM E and Benson G C 1953 Can. J, Phys. 31 1087-94
NorP 1958 Z. Krist. 110 112-26

Phllis E G 1951 Functions of a Complex Variable (Edinburgh: Oliver and Boyd) p 135

Sakamoto Y 1958 J. Chem. Phys. 28 164-5

505

A7)

Techmarsh EC 1951 The Theory of the Riemann Zeta Function (Oxford: Oxford University Press) chap 2

Tuker 171974 J. Phys. A: Math., Nucl. Gen. 7 1568-75
—1975J. Phys. A: Math. Gen. 8 1734-45
Zuker1J and Robertson M M 1975 J. Phys. A: Math. Gen. 8 874-81



